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An Outline of the Logic of my Proof of the

Riemann Hypothesis

K. Eswaran

August 15, 2021

Abstract

In this note I will try to describe in the simplest possible terms the
method I adopted to prove the Riemann Hypothesis. My purpose is to
help the reader not only to understand the proof but also enable him/her
to verify the work (if necessary) for his/her own satisfaction.

As far as clearly spelling out the outline of the logic of my

proof of RH, this document is self-contained. This is more detailed
than the earlier �A Pathway to the Riemann Hypothesis� uploaded on
March 2019, and is a corrected and amended version of �Method adopted
on Proof of RH� (uploaded in my Project-log of Researchgate on August
6, 2021).

Introduction

In the following pages I give the basic steps of my proof of the Riemann
Hypothesis. This brief note describes the scheme and the essential steps in the
proof of the RH I gave in my Main Paper [1] and which is reproduced in Expert
Committee Report (ECR) [2]. There are several theorems involved for which I
have given alternate proofs, but here I will only outline those which are simple
yet rigorous. I realize that it is di�cult to describe my method with all its
details to a complete layperson. But what follows will enable those with some
background in mathematics to understand and appreciate at least the gist of
the proof. The notes given in Refs. [3] and [4] will, I think, clarify many points.

1 Step 1:

First, I look at an analytic function, F (s), whose poles exactly correspond to the
non-trivial zeros of the zeta function, ζ(s), and use the techniques of complex
function theory to analyze it. The function F (s), de�ned as

F (s) =
ζ(2s)

ζ(s)
, (1)
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has these following properties: F (s) has poles at exactly the same positions
as ζ(s) has its non-trivial zeros in the critical region. Furthermore, the trivial
zeros, s = −2n where n is a positive integer, cancel out and do not appear as
poles in F (s). Also, F (s) exhibits one additional pole which corresponds to the
simple pole in ζ(2s), but this does not a�ect the analysis because it occurs on
the critical line s = 1/2.

F (s) is analytic in the region Re(s) > 1 and is there given by the in�nite
series:

F (s) =

∞∑
n=1

λ(n)

ns
, (2)

where the Liouville function λ(n) = (−1)Ω(n), where Ω(n) is the number of
prime factors of n, multiplicities included, with λ(1) ≡ 1.

2 Step 2:

In this step the necessary and su�cient conditions for the analyticity of F (s)
in the region Re(s) < 1 is determined. A technique previously used by Little-
wood, for similarly determining the behaviour of the function 1/ζ(s) by analytic
continuation, is used here to examine the behaviour of F (s). The summatory
function L(N) which is de�ned by :

L(N) =

N∑
n=1

λ(n) (3)

plays a crucial role in determining the position of the poles of F (s), and thereby
the zeros of ζ(s), in the critical region 0 < Re(s) < 1. Littlewood's theorem,
when applied to F (s), states that the asymptotic behaviour of L(N) for large
N determines the analyticity of F (s), and that i� the behaviour is such that

|L(N)| ≡ |
N∑

n=1

λ(n) | < C Na+ϵ (for largeN ) (4)

where 1/2 ≤ a < 1 , ϵ > 0, and C is a constant, F (s) will be analytic in the
region a < Re(s). This is the crucial result as far as RH is concerned because
if one can determine that actually a = 1/2 in (4) then the Riemann Hypothesis
is proved (see below). Inequality (4) is proved to be true in Section 5.1 of my
Main Paper. (See Equation (5.24), but replace G(x) by L(x).) An alternative
way of writing Eq. (4) is that F (s) will be analytic in the region a < Re(s) i�

Lim
N→∞

| L(N)

Na+ϵ
| = 0, ϵ > 0 (4a)

We know, from Riemann's own results (and the Prime Number theorem), that
the non-trivial zeros of ζ(s) all occur in the critical strip 0 < Re(s) < 1, and
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will be symmetrically placed in complex conjugate pairs around the critical line
Re(s) = 1/2. By examining (4), we can arrive at the following conclusion: If
we can prove that a = 1/2, it means that it is possible to analytically continue
F (s) leftwards from Re(s) = 1 right up to the critical line Re(s) = 1/2 without
meeting poles of F (s). But, since a pole of F (s) is a nontrivial zero of ζ(s), this
means the zeros of the the zeta function cannot lie in 1/2 < Re(s) < 1 and, by
symmetry, in 0 < Re(s) < 1/2, and so must lie on Re(s) = 1/2, thus proving
RH.

So we conclude that to show that a = 1/2 in (4) or (4a) is to prove the RH.
To do this we proceed as follows.

3 Step 3:

The necessity that (4) or (4a) must be satis�ed, for the Riemann Hypothesis
to be true, imposes very severe restrictions on the behaviour of the sequence of
the Liouville functions: {λ(1), λ(2), λ(3), .....}.

As mentioned, λ(n) is de�ned as: λ(1) = 1 and for n > 1 : λ(n) = (−1)Ω(n)

and is determined by factorizing n and �nding Ω(n), the number of prime factors
of n (multiplicities included). We already know that λ(n) is fully determined by
factorizing n and has a multiplicative property, namely: λ(m× n) = λ(m)λ(n),
for all natural numbers m,n.

Now, for RH to be true, in (4) or (4a), the �rst N terms (where N is large)
of the λ sequence must sum as:

|λ(1) + λ(2) + λ(3) + ......+ λ(N) | < C N1/2+ϵ (5)

The above equation brings to mind a similar relationship satis�ed by another
sequence of numbers c(1), c(2), c(3), ...., where c(n) (= ±1 with equal probability
and randomly) corresponds to the nth step of a one-dimensional random walk
in x. If c(n) = +1, it means the nthis a unit step in the positive x-direction, and
if c(n) = −1 it is in the negative x-direction. The c(n)'s can also be thought
of as perfect coin tosses, if we replace, say, Heads by +1 and Tails by −1; so a
N -step random walk can be thought of as a sum of a coin toss experiment where
a coin is tossed N times. It is well known that for such a random-walk sequence,
where the sum indicates the distance travelled from the starting position in N
steps, that the magnitude of such a sum (assuming N is very large) satis�es the
relationship:

| c(1) + c(2) + c(3) + ......+ c(N) | < C ′ N1/2+δ, (6)

where C ′ is a constant and δ is a small positive number which tends to zero1 as
N → ∞. I shall refer to this as the square root law.

This is derived by using the standard Peano's Axioms (PA) Peano's Axioms
and the assumptions that the random walk behaves in such a manner that:

1This result follows from the Law of the Iterated Logarithmof Khinchine and Kolmogorov,
(see pp. 169-170 of ECR).
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(a) Each step can be either in the positive direction or negative direction,
i.e., in the nth step c(n) can be +1 or −1, with equal probability.

(b) The value of c(n) is independent of all previous c's. In other words,
knowing the previous consecutive M steps leading to the nth step, yields no
additional information on the value of the (n + 1)th. It follows that the Ran-
dom walk is unpredictable, because by knowing any set of the previous values
of the c's till c(n), we cannot predict c(n + 1). Henceforth we will use Unpre-

dictability to be synonymous with Independence. In particular, it follows that
the sequence of steps cannot be periodic, that is, the pattern of steps cannot
exhibit a repetitive, and thus predictable, pattern.

The two assumptions (a) and (b) along with Peano's Axioms are enough to
derive (6). This has been shown by many researchers (e.g. See Chandrasekar
(1943), Khinchine (1924) and Kolmogorov(1929), see references in Main Paper.
Also the relevant part of S.Chandrasekhar's paper is reproduced in ECR pp.
59-64. Chapter 1 in pp. 60-61 contains his two assumptions). I will refer to the
above conditions as (a) Equal Probability and (b) Independence.

It is most important to realize that only conditions (a) and (b) and PA are
necessary to prove that the square root law in (6) is valid for large N . No
other condition or assumption regarding the behaviour of a random walk (or
coin tosses) is necessary.

3.1 The Argument:

As we have seen, Eq. (5) must be satis�ed by the λ(n) sequence if the Riemann

Hypothesis is TRUE, which we deduce from Littlewood's Theorem. However,
(5) needs be satis�ed only for large N (this being the actual condition of Lit-
tlewood's theorem).

Turning to (6), note that there are many (actually, in�nite, when N → ∞)
distinct sequences of random walks possible, as they can di�er from each other
at every step, or toss of the coin. For instance, if 1,000 random walkers, say,
each take N steps, for su�ciently large N these 1,000 sequences will become
uniquely di�erent and can be thought of as 1,000 di�erent instances of a random
walk of N steps each. As they are also independent of each other nothing more
can be said about their relationship with each other, except that on average the
distance traveled in N steps will be around C ′ N1/2 from the starting point.

If we wish to compare (6) with (5) there are several conceptual issues. First,
the sequence in (5) is deterministic because λ(n) can be precisely calculated
for each value of n. However, we show that the λ(n) sequence, nevertheless,
satis�es conditions (a) and (b) mentioned above, and thereby behaves as a
perfect Random Walk, in the limit of large N . Second, we have only one such
λ(n) sequence because there is only one natural number system. So we then
consider this single sequence as one instance of a hypothetical random walk of
N steps, when N is large, and investigate it in like manner.
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Properties of the λ−sequence that need to be proved
(α) Given an arbitrarily large n chosen at random, there is an equal proba-

bility of λ(n) being either +1 or −1.
(β) The value of λ(n) is independent of all previous λ's for large n. Knowing

the values of λ(k) for any �nite set of M consecutive values k = n −M + 1 to
k = n , i.e. upto λ(n) does not help us predict λ(n+ 1) (independence)2.

It is to be noted that as, according to Littlewood's theorem, the RH is
determined only by the asymptotic behaviour of the λ sequence, these need be
shown in our case only for large N , i.e., N → ∞. In particular, (β) can be
interpreted to mean that λ(n) should be independent of any �nite number of
preceding λ's.

Note that (α) and (β) are strict analogues of the (a) Equal Probability and
(b) Independence conditions required for Random Walks, except that they need
hold only for large N . If, by using the number theoretical properties
of the integers (i.e., PA), it is somehow possible to prove that the
λ sequence satis�es the rules of Equal probability and Independence
for large N, then we will show that the λ-sequence is one particular
instance of a Random Walk, as N → ∞ .

Given the above reasoning, if (α) and (β) are satis�ed by the λ-sequence
then it is a fait accompli that all theorems of Random Walks must hold for the

λ sequence, for N → ∞. Otherwise there is a problem with the consistency of

mathematics, pointing to an inconsistency in Peano's Axioms. [Were this not
so, one can argue thus: How is it that, in case of a random walk sequence {c(n)},
which satis�es (a) and (b), it can be proved by using PA that some result is
true, but for the case of the λ-sequence {λ(n)}, which is shown by using PA to
satisfy the identical conditions (α) and (β), the same result is not true?] This
is emphasized here to underscore the important point that the deterministic
nature of the λ(n)'s is not relevant to the statistical properties that it displays
(see footnote 2). This reasoning, which is actually `proof by contradiction',
takes its �nal recourse, as always, to the consistency of mathematics to prove a
theorem.

Hence the next step is to prove that the properties (α) and (β) hold for the
{λ(n)}for large values of n ( i.e., n → ∞).

2The fact that the λ(n) is actually deterministic plays no role in the proof of its indepen-
dence, for large n. For example, given λ(n) for some n, the formula λ(m.n) = λ(m).λ(n),can
determine the next predictable value λ(2.n) = λ(2).λ(n) = −λ(n), but for large n, say
n = 10100, the integer 2n will be at a distance of 10100 from n making such a prediction
statistically insigni�cant and irrelevant in the limit n → ∞. Notice that the values of all
the other λ(k) 's in the range between k = 10100 + 1 and k = 2 × 10100 − 1 which are
terms belonging to an extremely long sequence, are all independent of each other! This is
because for any given k, if λ(k) is known, the nearest value which can be deduced from this
is λ(2k) = −λ(k), but 2k is out of the above de�ned range and is increasingly far from k as
k → ∞.
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4 Step 4: Proofs of Properties of the λ-sequence

In this step several theorems are proved using the number theoretical (arith-
metical) properties of integers, primes and the unique factorization of integers
to establish the properties (α) and (β) of the λ-sequence as listed above. These
proofs are fairly straightforward and are done from �rst principles:

(α) On Equal Probabilities, is proved in theorem 3-B, Sec 5.2 of my Main Pa-
per (p. 168 of Expert Commitee Report, (ECR)). For this purpose the concept
of �Towers�3 is used in the proof.,Sec 2, pp. 159-161 of ECR . An alternative
proof by constuction of all prime products and induction is also given in a sepa-
rate paper pp. 195-197 of ECR. A third proof, which follows from Littlewood's
theorem but assumes the fact that there is no zero with Re(s) = 1 (proved in
the Prime number Theorem) can also be derived (this is not given in the Main
paper, but see pp. 13-14 of ECR). In fact, my second proof of Equal Probabili-
ties is e�ectively a very short (two page) proof of the Prime Number Theorem!
See footnote 6 on page 6 of Ref (4) in Reference List given below.

(β) Two separate proofs are given for unpredictability (independence). The
�rst uses a purely arithmetical argument (see Sec. 11.2-11.4 page 173 of ECR).
The second method uses the intuitive conclusion of Kurt Godel who said that
every predictive function must be recursive. Using this, if we assume that
one can predict λ(n) given the (�nite) M previous values of the λ's, it will
inevitably result in the λ-sequence becoming cyclic, which in turn will imply
(through Littlewood's theorem) that there are no zeros of ζ(s) in the critical
strip, contrary to the known fact. In other words, no relationship such as
λ(n) = f(λ(n − 1), λ(n − 2), λ(n − 3), ....., λ(n − M)) is ever possible.4 This
makes the λ(n) unpredictable and independent of �nite numbers of previous
values, as n → ∞. This also demonstrates that the sequence {λ(n)} is noncyclic
(see Appendix III p. 172 of ECR).

Since it has now been proved that the sequence {λ(n)} exhibits the
two properties of (a) Equal Probability and (b) independence (unpre-
dictability), it has been proved that the λ-sequence is a random walk,
as n → ∞.5

The above establishes RH, by a�rming that the asymptotic limit of a
is necessarily 1/2, thereby satisfying (5).

However, in the Main paper we use a more rigorous procedure using Khin-
chine and Kolmogorov's Law of the Iterated Logarithm (LIL) to arrive at the
same result of proving RH (see pp. 169-170 of ECR).

3I had used towers (sets) each containing perfectly ordered, uniformly increasing integers.
So the method of mapping is �ne and can be justi�ed (as it will not lead to any Cantor-type
of paradox). To avoid even this kind of objection (which is misguided anyway), I have given
another proof of "Equal Probabilities" that does not use mapping techniques (pp 195-197 of
ECR)

4See p. 168 of ECR and also my comments on p. 36 which justi�es the choice of the
relationship: λ(n) = f(λ(n− 1), λ(n− 2), λ(n− 3), ....., λ(n−M)).

5In Appendix V, page 174 of ECR, I give an additional `Theoretical Physicists Proof'
that the λ-sequence follows the square root law, which can be read out of curiosity but is
unnecessary for the RH proof.
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5 Experimental veri�cation

In the last Appendix VI, page 177 of ECR, numerical experiments are described
and there it is shown that large sequence of lambdas {λ(n)} behave `like' random
walks (or equivalently like coin tosses). This empirical veri�cation does not

constitute a proof� which has been done mathematically as described above
� but provides some statistical con�rmation consistent with the mathematical
proof. Interestingly, the λ-sequence does not show detectably non-Random walk
behaviour even at surprisingly low values of N .

Kumar Eswaran
15 August 2021

6 A Personal Note and Open Review

PS: I believe I have answered all the questions6 that I could envisage being asked
by sincere readers, and so do not anticipate posting any more explanations of
my work on the RH. Nevertheless, if you still seek some minor clari�cations you
can contact me at email: kumar.e@gmail.com

NOTE: However, I request that a serious challenge or objection to
the proof should be addressed to: Dr. P. Narasimha Reddy, Chair-
man, Expert Committee (email: nrriemann@sreenidhi.edu.in), along
with their full name, address, and institutional a�liation. If the Expert
Committee believes the question is serious and warrants a response, it will be
answered with the entire correspondence published, along with the name and
a�liation of the questioner, to maintain the integrity of the Open Review orig-
inally conducted for this work. As spelt out by the Expert Committee in the
Preface and Foreword of ECR: Ref[2], they "could not think of a fairer way"
than the Open Review system. Given the importance of RH to mathematics, in
the interest of transparency it is best that the review process that they initiated
is respected.

REFERENCE LIST

PLEASE CLICK ON THE LINKS GIVEN BELOW:
1)The Final and Exhaustive Proof of the Riemann Hypothesis

from First Principles.
2) ECR: An Expert Committee's Report on Eswaran's Proof
3) A Brief note on Methodology adopted in the Proof of RH
4) Questions and Answers for my proof of RH
The above Note has answers to 6 questions and is 8 pages long. By mistake

I drew a line on the 7th page but the note continues to page 8.
6Reference[4] contains some questions that I have answered regarding my proof. This could

be consulted. Answers to some simple questions which were posed more than 2 years ago, are
available in my Project-log in Researchgate.net
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